Myosin II and spectrin β display mechanosensitive accumulations in invasive protrusions during cell–cell fusion of Drosophila myoblasts. The biochemical inhibition and deactivation of these proteins results in significant fusion defects.… Click to show full abstract
Myosin II and spectrin β display mechanosensitive accumulations in invasive protrusions during cell–cell fusion of Drosophila myoblasts. The biochemical inhibition and deactivation of these proteins results in significant fusion defects. Yet, a quantitative understanding of how the protrusion geometry and fusion process are linked to these proteins is still lacking. Here we present a quantitative model to interpret the dependence of the protrusion size and the protrusive force on the mechanical properties and microstructures of the actin cytoskeleton and plasma membrane based on a mean-field theory. We build a quantitative linkage between mechanosensitive accumulation of myosin II and fusion pore formation at the tip of the invasive protrusion through local area dilation. The mechanical feedback loop between myosin II and local deformation suggests that myosin II accumulation possibly reduces the energy barrier and the critical radius of fusion pores. We also analyse the effect of spectrin β on maintaining the proper geometry of the protrusions required for the success of cell–cell fusion.
               
Click one of the above tabs to view related content.