LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The bubble-induced population dynamics of fermenting yeasts

Photo from wikipedia

Bubble-induced transport is a ubiquitous natural and industrial phenomenon. In brewery, such transport occurs due to gas bubbles generated through anaerobic fermentation by yeasts. Two major kinds of fermentation viz.… Click to show full abstract

Bubble-induced transport is a ubiquitous natural and industrial phenomenon. In brewery, such transport occurs due to gas bubbles generated through anaerobic fermentation by yeasts. Two major kinds of fermentation viz. top (ale) and bottom (lager) fermentation, display a difference in their yeast distributions inside a sugar broth. The reason for this difference is believed to be yeast–bubble adhesion arising due to surface hydrophobicity of the yeast cell wall; however, the physical mechanism is still largely a mystery. In this report, through in vivo experiments, we develop a novel theoretical model for yeast distribution based on the general conservation law. This work clarifies that bubble-induced diffusion is the dominant transport mechanism in bottom-fermentation by lagers whereas, yeast–bubble adhesion plays a leading role in transporting ales in top-fermentation, thereby corroborating the centuries-old belief regarding distribution difference in yeast population in two kinds of fermentation.

Keywords: induced population; fermentation; population dynamics; bubble induced; dynamics fermenting

Journal Title: Journal of the Royal Society Interface
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.