LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Long-distance transequatorial navigation using sequential measurements of magnetic inclination angle

Photo from wikipedia

Diverse taxa use Earth’s magnetic field in combination with other sensory modalities to accomplish navigation tasks ranging from local homing to long-distance migration across continents and ocean basins. Several animals… Click to show full abstract

Diverse taxa use Earth’s magnetic field in combination with other sensory modalities to accomplish navigation tasks ranging from local homing to long-distance migration across continents and ocean basins. Several animals have the ability to use the inclination or tilt of magnetic field lines as a component of a magnetic compass sense that can be used to maintain migratory headings. In addition, a few animals are able to distinguish among different inclination angles and, in effect, exploit inclination as a surrogate for latitude. Little is known, however, about the role that magnetic inclination plays in guiding long-distance migrations. In this paper, we use an agent-based modelling approach to investigate whether an artificial agent can successfully execute a series of transequatorial migrations by using sequential measurements of magnetic inclination. The agent was tested with multiple navigation strategies in both present-day and reversed magnetic fields. The findings (i) demonstrate that sequential inclination measurements can enable migrations between the northern and southern hemispheres, and (ii) demonstrate that an inclination-based strategy can tolerate a reversed magnetic field, which could be useful in the development of autonomous engineered systems that must be robust to magnetic field changes. The findings also appear to be consistent with the results of some animal navigation experiments, although whether any animal exploits a strategy of using sequential measurements of inclination remains unknown.

Keywords: long distance; navigation; using sequential; inclination; sequential measurements; magnetic inclination

Journal Title: Journal of the Royal Society Interface
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.