LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Understanding the dynamic properties of trees using the motions constructed from multi-beam flash light detection and ranging measurements

Photo from wikipedia

Measuring the three-dimensional motion of trees at every position remains challenging as it requires dynamic measurement technology with sufficient spatial and temporal resolution. Consequently, this study explores the use of… Click to show full abstract

Measuring the three-dimensional motion of trees at every position remains challenging as it requires dynamic measurement technology with sufficient spatial and temporal resolution. Consequently, this study explores the use of a novel multi-beam flash light detection and ranging (LiDAR) sensor to tackle such a sensing barrier. A framework is proposed to record tree vibrations, to construct the motions of tree skeletons from the point-cloud frames recorded by the LiDAR sensor and to derive the dynamic properties of trees. The feasibility of the framework is justified through measurement on a Ficus microcarpa under pull-and-release tests. The relative differences for the first two modal frequencies between the LiDAR and linear variable differential transformer measurements in the displacement Fourier spectra are 0.1% and 2.5%, respectively. The framework is further adopted to study the dynamic response of different trees subjected to typhoons, including a Liquidambar formosana, three Araucaria heterophylla trees, a Sterculia lanceolata, a Celtis sinensis, a Tabebuia chrysantha and a Cinnamomum camphora. Results suggest that broadleaved trees might exhibit vibration in a wide frequency band, whereas the coniferous trees could follow a distinct dominant frequency.

Keywords: dynamic properties; flash light; beam flash; multi beam; detection ranging; light detection

Journal Title: Journal of the Royal Society Interface
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.