Like many scientists, ecologists depend heavily on continuous uninterrupted data in order to understand better the object of their study. Although this might be straightforward to achieve under controlled laboratory… Click to show full abstract
Like many scientists, ecologists depend heavily on continuous uninterrupted data in order to understand better the object of their study. Although this might be straightforward to achieve under controlled laboratory conditions, the situation is easily complicated under field conditions where sensors and data transmission are affected by harsh weather, living organisms, changes in atmospheric conditions etc. This often results in parts of the data being corrupted or missing altogether. We propose the use of the most recent machine-learning techniques to reverse such data losses in multi-channel time series. In particular, we focus on tree stem growth data obtained from the TreeNet project, which monitors the changes in stem radius and environmental conditions of a few hundred trees across Switzerland. In the first part of the study, we test the performance of five architectures based on encoders and recurrent and convolutional neural networks, and we show that a deep neural network combining long short-term memory with one-dimensional convolutional layers performs the best. In the second part, we adopt this model to reconstruct the original TreeNet dataset, which we then use in a separate classification problem to show the effect of the proposed gap-filling procedure.
               
Click one of the above tabs to view related content.