LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Understanding cellular growth strategies via optimal control

Photo from wikipedia

Evolutionary prediction and control are increasingly interesting research topics that are expanding to new areas of application. Unravelling and anticipating successful adaptations to different selection pressures becomes crucial when steering… Click to show full abstract

Evolutionary prediction and control are increasingly interesting research topics that are expanding to new areas of application. Unravelling and anticipating successful adaptations to different selection pressures becomes crucial when steering rapidly evolving cancer or microbial populations towards a chosen target. Here we introduce and apply a rich theoretical framework of optimal control to understand adaptive use of traits, which in turn allows eco-evolutionarily informed population control. Using adaptive metabolism and microbial experimental evolution as a case study, we show how demographic stochasticity alone can lead to lag time evolution, which appears as an emergent property in our model. We further show that the cycle length used in serial transfer experiments has practical importance as it may cause unintentional selection for specific growth strategies and lag times. Finally, we show how frequency-dependent selection can be incorporated to the state-dependent optimal control framework allowing the modelling of complex eco-evolutionary dynamics. Our study demonstrates the utility of optimal control theory in elucidating organismal adaptations and the intrinsic decision making of cellular communities with high adaptive potential.

Keywords: understanding cellular; growth strategies; control; cellular growth; optimal control

Journal Title: Journal of the Royal Society Interface
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.