LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Telomeric replication stress: the beginning and the end for alternative lengthening of telomeres cancers

Photo from wikipedia

Telomeres are nucleoprotein structures that cap the ends of linear chromosomes. Telomeric DNA comprises terminal tracts of G-rich tandem repeats, which are inherently difficult for the replication machinery to navigate.… Click to show full abstract

Telomeres are nucleoprotein structures that cap the ends of linear chromosomes. Telomeric DNA comprises terminal tracts of G-rich tandem repeats, which are inherently difficult for the replication machinery to navigate. Structural aberrations that promote activation of the alternative lengthening of telomeres (ALT) pathway of telomere maintenance exacerbate replication stress at ALT telomeres, driving fork stalling and fork collapse. This form of telomeric DNA damage perpetuates recombination-mediated repair pathways and break-induced telomere synthesis. The relationship between replication stress and DNA repair is tightly coordinated for the purpose of regulating telomere length in ALT cells, but has been shown to be experimentally manipulatable. This raises the intriguing possibility that induction of replication stress can be used as a means to cause toxic levels of DNA damage at ALT telomeres, thereby selectively disrupting the viability of ALT cancers.

Keywords: alternative lengthening; replication; replication stress; lengthening telomeres

Journal Title: Open Biology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.