LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On strongly connected networks with excitable-refractory dynamics and delayed coupling

Photo from wikipedia

We consider a directed graph model for the human brain’s neural architecture that is based on small scale, directed, strongly connected sub-graphs (SCGs) of neurons, that are connected together by… Click to show full abstract

We consider a directed graph model for the human brain’s neural architecture that is based on small scale, directed, strongly connected sub-graphs (SCGs) of neurons, that are connected together by a sparser mesoscopic network. We assume transmission delays within neuron-to-neuron stimulation, and that individual neurons have an excitable-refractory dynamic, with single firing ‘spikes’ occurring on a much faster time scale than that of the transmission delays. We demonstrate numerically that the SCGs typically have attractors that are equivalent to continual winding maps over relatively low-dimensional tori, thus representing a limit on the range of distinct behaviour. For a discrete formulation, we conduct a large-scale survey of SCGs of varying size, but with the same local structure. We demonstrate that there may be benefits (increased processing capacity and efficiency) in brains having evolved to have a larger number of small irreducible sub-graphs, rather than few, large irreducible sub-graphs. The network of SCGs could be thought of as an architecture that has evolved to create decisions in the light of partial or early incoming information. Hence the applicability of the proposed paradigm to underpinning human cognition.

Keywords: connected networks; excitable refractory; networks excitable; sub graphs; strongly connected; refractory dynamics

Journal Title: Royal Society Open Science
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.