LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A generalized solution procedure for in-plane free vibration of rectangular plates and annular sectorial plates

Photo by anniespratt from unsplash

A generalized solution procedure is developed for in-plane free vibration of rectangular and annular sectorial plates with general boundary conditions. For the annular sectorial plate, the introduction of a logarithmic… Click to show full abstract

A generalized solution procedure is developed for in-plane free vibration of rectangular and annular sectorial plates with general boundary conditions. For the annular sectorial plate, the introduction of a logarithmic radial variable simplifies the basic theory and the expression of the total energy. The coordinates, geometric parameters and potential energy for the two different shapes are organized in a unified framework such that a generalized solving procedure becomes feasible. By using the improved Fourier–Ritz approach, the admissible functions are formulated in trigonometric form, which allows the explicit assembly of global mass and stiffness matrices for both rectangular and annular sectorial plates, thereby making the method computationally effective, especially when analysing annular sectorial plates. Moreover, the improved Fourier expansion eliminates the potential discontinuity of the original normal and tangential displacement functions and their derivatives in the entire domain, and accelerates the convergence. The generalized Fourier–Ritz approach for both shapes has the characteristics of generality, accuracy and efficiency. These features are demonstrated via a few numerical examples.

Keywords: generalized solution; annular sectorial; sectorial plates; plane free; solution procedure

Journal Title: Royal Society Open Science
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.