LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Stable, metastable and unstable cellulose solutions

Photo by ryanyeamanphoto1 from unsplash

We have characterized the dissolution state of microcrystalline cellulose (MCC) in aqueous tetrabutylammonium hydroxide, TBAH(aq), at different concentrations of TBAH, by means of turbidity and small-angle X-ray scattering. The solubility… Click to show full abstract

We have characterized the dissolution state of microcrystalline cellulose (MCC) in aqueous tetrabutylammonium hydroxide, TBAH(aq), at different concentrations of TBAH, by means of turbidity and small-angle X-ray scattering. The solubility of cellulose increases with increasing TBAH concentration, which is consistent with solubilization driven by neutralization. When comparing the two polymorphs, the solubility of cellulose I is higher than that of cellulose II. This has the consequence that the dissolution of MCC (cellulose I) may create a supersaturated solution with respect to cellulose II. As for the dissolution state of cellulose, we identify three different regimes. (i) In the stable regime, corresponding to concentrations below the solubility of cellulose II, cellulose is molecularly dissolved and the solutions are thermodynamically stable. (ii) In the metastable regime, corresponding to lower supersaturations with respect to cellulose II, a minor aggregation of cellulose occurs and the solutions are kinetically stable. (iii) In the unstable regime, corresponding to larger supersaturations, there is macroscopic precipitation of cellulose II from solution. Finally, we also discuss strong alkali solvents in general and compare TBAH(aq) with the classical NaOH(aq) solvent.

Keywords: regime corresponding; cellulose; stable metastable; metastable unstable; unstable cellulose; solubility cellulose

Journal Title: Royal Society Open Science
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.