LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Adaptive phenotypic variation among clonal ant workers

Photo from wikipedia

Phenotypic variations are observed in most organisms, but their significance is not always known. The phenotypic variations observed in social insects are exceptions. Genetically based response threshold variances have been… Click to show full abstract

Phenotypic variations are observed in most organisms, but their significance is not always known. The phenotypic variations observed in social insects are exceptions. Genetically based response threshold variances have been identified among workers and are thought to play several important adaptive roles in social life, e.g. allocating tasks among workers according to demand, promoting the sustainability of the colony and forming the basis of rationality in collective decision-making. Several parthenogenetic ants produce clonal workers and new queens by asexual reproduction. It is not clearly known whether such genetically equivalent workers show phenotypic variations. Here, we demonstrate that clonal workers of the parthenogenetic ant Strumigenys membranifera show large threshold variances among clonal workers. A multi-locus genetic marker confirmed that colony members are genetic clones, but they showed variations in their sucrose response thresholds. We examined the changing pattern of the thresholds over time generating hypotheses regarding the mechanism underlying the observed phenotypic variations. The results support the hypothesis that epigenetic modifications that occur after eclosion into the adult form are the cause of the phenotypic variations in this asexual species.

Keywords: clonal workers; adaptive phenotypic; among clonal; variation among; phenotypic variations; phenotypic variation

Journal Title: Royal Society Open Science
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.