LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Novel ternary nanocomposites of MWCNTs/PANI/MoS2: preparation, characterization and enhanced electrochemical capacitance

Photo by dark_matter_09 from unsplash

In this work, nanoflower-like MoS2 grown on the surface of multi-walled carbon nanotubes (MWCNTs)/polyaniline (PANI) nano-stem is synthesized via a facile in situ polymerization and hydrothermal method. Such a novel… Click to show full abstract

In this work, nanoflower-like MoS2 grown on the surface of multi-walled carbon nanotubes (MWCNTs)/polyaniline (PANI) nano-stem is synthesized via a facile in situ polymerization and hydrothermal method. Such a novel hierarchical structure commendably promotes the contact of PANI and electrolyte for faradaic energy storage. In the meanwhile, the double-layer capacitance of MoS2 is effectively used. The morphology and chemical composition of the as-prepared samples are characterized by scanning and transmission electron microscopies, X-ray diffraction and Fourier transform infrared spectra. The electrochemical performance of the samples is evaluated by cyclic voltammogram and galvanostatic charge–discharge measurements. It is found that the specific capacitance of the obtained MWCNTs/PANI/MoS2 hybrid is 542.56 F g−1 at a current density of 0.5 A g−1. Furthermore, the MWCNTs/PANI/MoS2 hybrid also exhibits good rate capability (62.5% capacity retention at 10 A g−1) and excellent cycling stability (73.71% capacitance retention) over 3000 cycles.

Keywords: capacitance; pani mos2; nanocomposites mwcnts; mwcnts pani; novel ternary; ternary nanocomposites

Journal Title: Royal Society Open Science
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.