LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Oxidation kinetics of YBaCo4O7+δ and substituted oxygen carriers

Photo by enginakyurt from unsplash

In this paper, the relaxation kinetics of the oxidation process of the YBaCo4O7+δ, Y0.95Ti0.05BaCo4O7+δ and Y0.5Dy0.5BaCo4O7+δ oxygen carriers is studied with isothermal reaction data. XRD analysis for fresh samples shows… Click to show full abstract

In this paper, the relaxation kinetics of the oxidation process of the YBaCo4O7+δ, Y0.95Ti0.05BaCo4O7+δ and Y0.5Dy0.5BaCo4O7+δ oxygen carriers is studied with isothermal reaction data. XRD analysis for fresh samples shows that all the samples have YBaCo4O7+δ structure. Scanning electron microscopy images of samples show that the samples consist of porous agglomerates of primary particles. Isothermal TG experiments are conducted with temperatures of 290°C, 310°C, 330°C and 350°C, respectively. It is found that the Avrami-Eroféev model describes solid-phase changes in the oxygen absorption process adequately. The results show that the distributed activation energies of the oxidation process obtained by the Avrami-Eroféev model are 42.079 kJ mol−1, 42.944 kJ mol−1 and 41.711 kJ mol−1 for the YBaCo4O7+δ, Y0.95Ti0.05BaCo4O7+δ and Y0.5Dy0.5BaCo4O7+δ oxygen carriers, respectively. The kinetic model was obtained to predict the oxygen carrier conversion of oxygen absorption for different time durations. The kinetic parameters obtained here are quite vital when this material is used in reactors.

Keywords: oxygen; substituted oxygen; kinetics ybaco4o7; ybaco4o7 substituted; oxygen carriers; oxidation kinetics

Journal Title: Royal Society Open Science
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.