LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Rheological properties and damage-control mechanism of oil-based drilling fluid with different types of weighting agents

Photo from wikipedia

The great amount of solid particles contained in a weighting agent is a major cause of the problems in both rheology properties and damage control mechanism of an oil-based drilling… Click to show full abstract

The great amount of solid particles contained in a weighting agent is a major cause of the problems in both rheology properties and damage control mechanism of an oil-based drilling fluid (OBM). Therefore, a proper type of weighting agent can be a solution for the application of OBM. In this study, three weighting agents that have been commonly used with OBM, namely, standard barite, submicron barite and superfine manganese ore, are studied. Rheological properties of OBM and the degree of formation damage are assessed with regard to the three weighting agents. The agents are also studied in aspects of particle size, micromorphology, filtration loss and wall-building property, acid dissolution efficiency of mud cake, lubricity and sedimentation stability to analyse the effects of the agents on rheological properties and the degree of damage as well as to figure out the mechanism of rheology control and damage control. For the OBM, there is a mutual effect between rheological stability and the degree of damage. In consideration of the agents' properties, we can enhance the rheological stability of the OBM and control the degree of formation damage by properly selecting particle size, using acid-soluble materials and forming the mud cake with ultra-low permeability that can easily be cleared away.

Keywords: damage control; mechanism; weighting agents; control; rheological properties

Journal Title: Royal Society Open Science
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.