LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Functional materials based on molecules with hydrogen-bonding ability: applications to drug co-crystals and polymer complexes

Photo from wikipedia

The design, synthesis and property characterization of new functional materials has garnered interest in a variety of fields. Materials that are capable of recognizing and binding with small molecules have… Click to show full abstract

The design, synthesis and property characterization of new functional materials has garnered interest in a variety of fields. Materials that are capable of recognizing and binding with small molecules have applications in sensing, sequestration, delivery and property modification. Specifically, recognition of pharmaceutical compounds is of interest in each of the aforementioned application areas. Numerous pharmaceutical compounds comprise functional groups that are capable of engaging in hydrogen-bonding interactions; thus, materials that are able to act as hydrogen-bond receptors are of significant interest for these applications. In this review, we highlight some crystalline and polymeric materials that recognize and engage in hydrogen-bonding interactions with pharmaceuticals or small biomolecules. Moreover, as pharmaceuticals often exhibit multiple hydrogen-bonding sites, many donor/acceptor molecules have been specifically designed to interact with the drug via such multiple-point hydrogen bonds. The formation of multiple hydrogen bonds not only increases the strength of the interaction but also affords unique hydrogen-bonded architectures.

Keywords: hydrogen; materials based; based molecules; drug; functional materials; hydrogen bonding

Journal Title: Royal Society Open Science
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.