LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Generalized regression neural network association with terahertz spectroscopy for quantitative analysis of benzoic acid additive in wheat flour

Investigations were initiated to develop terahertz (THz) techniques associated with machine learning methods of generalized regression neural network (GRNN) and back-propagation neural network (BPNN) to rapidly measure benzoic acid (BA)… Click to show full abstract

Investigations were initiated to develop terahertz (THz) techniques associated with machine learning methods of generalized regression neural network (GRNN) and back-propagation neural network (BPNN) to rapidly measure benzoic acid (BA) content in wheat flour. The absorption coefficient exhibited a maximum absorption peak at 1.94 THz, which generally increased with the content of BA additive. THz spectra were transformed into orthogonal principal component analysis (PCA) scores as the input vectors of GRNN and BPNN models. The best GRNN model was achieved with three PCA scores and spread value of 0.2. Compared with the BPNN model, GRNN model to powder samples could be considered very successful for quality control of wheat flour with a correlation coefficient of prediction (rp) of 0.85 and root mean square error of prediction of 0.10%. The results suggest that THz technique association with GRNN has a significant potential to quantitatively analyse BA additive in wheat flour.

Keywords: neural network; generalized regression; wheat flour; spectroscopy

Journal Title: Royal Society Open Science
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.