LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Experimental evaluation of 3D printed spiral phase plates for enabling an orbital angular momentum multiplexed radio system

Photo from wikipedia

This paper evaluates the performance of three-dimensionally (3D) printed spiral phase plates (SPPs) for enabling an orbital angular momentum (OAM) multiplexed radio system. The design and realization of the SPPs… Click to show full abstract

This paper evaluates the performance of three-dimensionally (3D) printed spiral phase plates (SPPs) for enabling an orbital angular momentum (OAM) multiplexed radio system. The design and realization of the SPPs by means of additive manufacturing exploiting a high-permittivity material is described. Modes 1 and 2 SPPs are then evaluated at 15 GHz in terms of 3D complex radiation pattern, mode purity and beam collimation by means of a 3D printed dielectric lens. The results with the lens yield a crosstalk of −8 dB for between modes 1 and −1, and −11.4 dB for between modes 2 and −2. We suggest a mode multiplexer architecture that is expected to further reduce the crosstalk for each mode. An additional loss of 4.2 dB is incurred with the SPPs inserted into the communication link, which is undesirable for obtaining reliable LTE-based communications. Thus, we suggest: using lower loss materials, seeking ways to reduce material interface reflections or alternative ways of OAM multiplexing to realize a viable OAM multiplexed radio system.

Keywords: spiral phase; radio system; multiplexed radio; printed spiral

Journal Title: Royal Society Open Science
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.