LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Perceptual correlates of homosynaptic long-term potentiation in human nociceptive pathways: a replication study

Photo from wikipedia

Animal studies have shown that high-frequency stimulation (HFS) of peripheral C-fibres induces long-term potentiation (LTP) within spinal nociceptive pathways. The aim of this replication study was to assess if a… Click to show full abstract

Animal studies have shown that high-frequency stimulation (HFS) of peripheral C-fibres induces long-term potentiation (LTP) within spinal nociceptive pathways. The aim of this replication study was to assess if a perceptual correlate of LTP can be observed in humans. In 20 healthy volunteers, we applied HFS to the left or right volar forearm. Before and after applying HFS, we delivered single electrical test stimuli through the HFS electrode while a second electrode at the contra-lateral arm served as a control condition. Moreover, to test the efficacy of the HFS protocol, we quantified changes in mechanical pinprick sensitivity before and after HFS of the skin surrounding both electrodes. The perceived intensity was collected for both electrical and mechanical stimuli. After HFS, the perceived pain intensity elicited by the mechanical pinprick stimuli applied on the skin surrounding the HFS-treated site was significantly higher compared to control site (heterotopic effect). Furthermore, we found a higher perceived pain intensity for single electrical stimuli delivered to the HFS-treated site compared to the control site (homotopic effect). Whether the homotopic effect reflects a perceptual correlate of homosynaptic LTP remains to be elucidated.

Keywords: term potentiation; replication study; hfs; long term; nociceptive pathways

Journal Title: Royal Society Open Science
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.