LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A comparative test of the gamete dynamics theory for the evolution of anisogamy in Bryopsidales green algae

Photo by kaziminmizan from unsplash

Gamete dynamics theory proposes that anisogamy arises by disruptive selection for gamete numbers versus gamete size and predicts that female/male gamete size (anisogamy ratio) increases with adult size and complexity.… Click to show full abstract

Gamete dynamics theory proposes that anisogamy arises by disruptive selection for gamete numbers versus gamete size and predicts that female/male gamete size (anisogamy ratio) increases with adult size and complexity. Evidence has been that in volvocine green algae, the anisogamy ratio correlates positively with haploid colony size. However, green algae show notable exceptions. We focus on Bryopsidales green algae. While some taxa have a diplontic life cycle in which a diploid adult (=fully grown) stage arises directly from the zygote, many taxa have a haplodiplontic life cycle in which haploid adults develop indirectly: the zygote first develops into a diploid adult (sporophyte) which later undergoes meiosis and releases zoospores, each growing into a haploid adult gametophyte. Our comparative analyses suggest that, as theory predicts: (i) male gametes are minimized, (ii) female gamete sizes vary, probably optimized by number versus survival as zygotes, and (iii) the anisogamy ratio correlates positively with diploid (but not haploid) stage complexity. However, there was no correlation between the anisogamy ratio and diploid adult stage size. Increased environmental severity (water depth) appears to drive increased diploid adult stage complexity and anisogamy ratio: gamete dynamics theory correctly predicts that anisogamy evolves with the (diploid) stage directly provisioned by the zygote.

Keywords: adult; dynamics theory; gamete dynamics; anisogamy ratio; size; green algae

Journal Title: Royal Society Open Science
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.