LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tetracycline adsorption on magnetic sludge biochar: size effect of the Fe3O4 nanoparticles

Photo from wikipedia

Activated sludge, which is difficult and expensive to treat and dispose of, is a key concern in wastewater treatment plants. In this study, magnetic sludge biochar containing activated sludge and… Click to show full abstract

Activated sludge, which is difficult and expensive to treat and dispose of, is a key concern in wastewater treatment plants. In this study, magnetic sludge biochar containing activated sludge and different sizes (14.3, 40.2 and 90.5 nm) of Fe3O4 nanoparticles was investigated as an effective adsorbent for tetracycline (TC) adsorption. Magnetic sludge-based biochar was prepared by a facile cross-linking method and characterized by transmission electron microscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and zeta potential analysis. The adsorption performances of TC on three kinds of adsorbents were investigated. Although 14.3 nm Fe3O4 nanoparticles could be inclined to aggregate and partially filled with pores of biochar, it turned out that magnetic sludge biochar with 14.3 nm Fe3O4 nanoparticles exhibited optimum performance for TC removal with adsorption capacity up to 184.5 mg g−1, due to the larger amounts of functional groups and the change of zeta potential. Furthermore, the adsorption kinetics of TC on three kinds of adsorbents were studied, which implied that the pseudo-second-order kinetic model exhibited the better fit for the entire sorption process.

Keywords: adsorption; sludge; fe3o4 nanoparticles; sludge biochar; magnetic sludge

Journal Title: Royal Society Open Science
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.