LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Comparison between the kinematics for kangaroo rat hopping on a solid versus sand surface

Photo by k_yasser from unsplash

In their natural habitats, animals move on a variety of substrates, ranging from solid surfaces to those that yield and flow (e.g. sand). These substrates impose different mechanical demands on… Click to show full abstract

In their natural habitats, animals move on a variety of substrates, ranging from solid surfaces to those that yield and flow (e.g. sand). These substrates impose different mechanical demands on the musculoskeletal system and may therefore elicit different locomotion patterns. The goal of this study is to compare bipedal hopping by desert kangaroo rats (Dipodomys deserti) on a solid versus granular substrate under speed-controlled conditions. To accomplish this goal, we developed a rotary treadmill, which is able to have different substrates or uneven surfaces. We video recorded six kangaroo rats hopping on a solid surface versus sand at the same speed (1.8 m s−1) and quantified the differences in the hopping kinematics between the two substrates. We found no significant differences in the hop period, hop length or duty cycle, showing that the gross kinematics on the two substrates were similar. This similarity was surprising given that sand is a substrate that absorbs mechanical energy. Measurements of the penetration resistance of the sand showed that the combination of the sand properties, toe-print area and kangaroo rat weight was probably the reason for the similarity.

Keywords: versus sand; kinematics; solid versus; sand; hopping solid

Journal Title: Royal Society Open Science
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.