LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Experimental approaches to assess the effect of composition of abrasives in the cause of dental microwear

Photo by umanoide from unsplash

Dental microwear is used to investigate feeding ecology. Animals ingest geological material in addition to food. The full effect of geological abrasives on tooth wear is unknown. To evaluate mineralogical… Click to show full abstract

Dental microwear is used to investigate feeding ecology. Animals ingest geological material in addition to food. The full effect of geological abrasives on tooth wear is unknown. To evaluate mineralogical abrasives as tooth wear agents, rats were fed food manufactured with quartz silt, diatomaceous earth, and calcium carbonate. Rats were assigned to treatments and fed for 15 days. Molars were scanned with a Sensofar Plu Neox confocal microscope and evaluated using ISO-25178-2 parameters and traditional microwear variables using light microscopy. Using a pellet-diet as the control, all treatments had influence on microwear and discriminant function analyses indicated that unique surface textures had been produced. ISO variables with high discriminatory values were correlated to scratch and pit frequencies, but more ISO parameters identified changes associated with numbers of scratches than changes associated with pits. The microwear changes associated with the abrasive inclusions were co-dependent on the type of diet that the abrasives had been added to. The abrasives had less effect with pellets but produced more modified and more differentiated microwear when added to the transgenic dough. Although abrasives produce distinctive surface textures, some knowledge of the properties of food with the abrasives is needed to identify the abrasive agent.

Keywords: dental microwear; changes associated; effect; experimental approaches; assess effect; approaches assess

Journal Title: Royal Society Open Science
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.