Maternal immune and/or metabolic conditions relating to stress or nutritional status can affect in utero development among offspring with subsequent implications for later-life responses to infections. We used free-ranging European… Click to show full abstract
Maternal immune and/or metabolic conditions relating to stress or nutritional status can affect in utero development among offspring with subsequent implications for later-life responses to infections. We used free-ranging European badgers as a host-pathogen model to investigate how prenatal weather conditions affect later-life herpesvirus genital tract reactivation. We applied a sliding window analysis of weather conditions to 164 samples collected in 2018 from 95 individuals born between 2005–2016. We test if the monthly mean and variation in rainfall and temperature experienced by their mother during the 12 months of delayed implantation and gestation prior to parturition subsequently affected individual herpes reactivation rates among these offspring. We identified four influential prenatal seasonal weather windows that corresponded with previously identified critical climatic conditions affecting badger survival, fecundity and body condition. These all occurred during the pre-implantation rather than the post-implantation period. We conclude that environmental cues during the in utero period of delayed implantation may result in changes that affect an individual's developmental programming against infection or viral reactivation later in life. This illustrates how prenatal adversity caused by environmental factors, such as climate change, can impact wildlife health and population dynamics—an interaction largely overlooked in wildlife management and conservation programmes.
               
Click one of the above tabs to view related content.