LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Using average transcription level to understand the regulation of stochastic gene activation

Photo from wikipedia

Gene activation is a random process, modelled as a framework of multiple rate-limiting steps listed sequentially, in parallel or in combination. Together with suitably assumed processes of gene inactivation, transcript… Click to show full abstract

Gene activation is a random process, modelled as a framework of multiple rate-limiting steps listed sequentially, in parallel or in combination. Together with suitably assumed processes of gene inactivation, transcript birth and death, the step numbers and parameters in activation frameworks can be estimated by fitting single-cell transcription data. However, current algorithms require computing master equations that are tightly correlated with prior hypothetical frameworks of gene activation. We found that prior estimation of the framework can be facilitated by the traditional dynamical data of mRNA average level M(t), presenting discriminated dynamical features. Rigorous theory regarding M(t) profiles allows to confidently rule out the frameworks that fail to capture M(t) features and to test potential competent frameworks by fitting M(t) data. We implemented this procedure for a large number of mouse fibroblast genes under tumour necrosis factor induction and determined exactly the ‘cross-talking n-state’ framework; the cross-talk between the signalling and basal pathways is crucial to trigger the first peak of M(t), while the following damped gentle M(t) oscillation is regulated by the multi-step basal pathway. This framework can be used to fit sophisticated single-cell data and may facilitate a more accurate understanding of stochastic activation of mouse fibroblast genes.

Keywords: gene activation; using average; transcription; level; gene; activation

Journal Title: Royal Society Open Science
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.