LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Internal anatomy of a fossilized embryonic stage of the Cambrian-Ordovician scalidophoran Markuelia

Photo from wikipedia

The Wangcun fossil Lagerstätte in Hunan, South China, has yielded hundreds of fossilized embryos of Markuelia hunanensis representing different developmental stages. Internal tissues have only rarely been observed, impeding further… Click to show full abstract

The Wangcun fossil Lagerstätte in Hunan, South China, has yielded hundreds of fossilized embryos of Markuelia hunanensis representing different developmental stages. Internal tissues have only rarely been observed, impeding further understanding of the soft tissue anatomy, phylogenetic affinity and evolutionary significance of Markuelia. In this study, we used synchrotron radiation X-ray tomographic microscopy (SRXTM) to study a new collection of fossil embryos from the Wangcun fossil Lagerstätte. We describe specimens exhibiting a spectrum of preservation states, the best of which preserves palisade structures underneath the cuticle of the head and tail, distinct from patterns of centripetal mineralization of the cuticle and centrifugal mineralization of hypha-like structures, seen elsewhere in this specimen and other fossils within the same assemblage. Our computed tomographic reconstruction of these mineralization phases preserves the gross morphology of (i) longitudinal structures associated with the tail spines, which we interpret as the proximal ends of longitudinal muscles, and (ii) a ring-shaped structure internal to the introvert, which we interpret as a ring-shaped brain, as anticipated of the cycloneuralian affinity of Markuelia. This is the first record of a fossilized nervous system in a scalidophoran, and the first instance in Orsten-style preservation, opening the potential for further such records within this widespread mode of high-fidelity three-dimensional preservation.

Keywords: fossilized embryonic; internal anatomy; anatomy fossilized; embryonic stage; stage cambrian; anatomy

Journal Title: Royal Society Open Science
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.