LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Improving the thermal resistance of fluorescent CsPb(Br,I)3 perovskite quantum dots by surface modification with perfluorodecanoic acid

Photo from wikipedia

CsPb(Br,I)3 quantum dots (QDs) show application potential for optoelectronic devices. However, their thermal degradation is a significant problem. In this work, the effects of perfluorodecanoic acid (PFDA) modification on the… Click to show full abstract

CsPb(Br,I)3 quantum dots (QDs) show application potential for optoelectronic devices. However, their thermal degradation is a significant problem. In this work, the effects of perfluorodecanoic acid (PFDA) modification on the photoluminescence (PL) and thermal resistance of CsPb(Br,I)3 QDs were evaluated. The PL intensity of oleic-acid-modified quantum dots (OA-QDs) in toluene decreased drastically upon heating at 100°C. The PL quantum yield of the QDs increased from 69.6% to 77.4% upon modification with PFDA. Furthermore, the PL intensity of the QDs modified with PFDA (PFDA-QDs) increased to 140.6% upon heating, because of the reduction of surface defects upon adsorption of PFDA and its optimized adsorption state. A solid-film PFDA-QDs sample heated at 80°C for 4 h showed temporary PL enhancements for the OA-QDs and PFDA-QDs films to 445% and 557% of their initial values, respectively, upon heating for 0.25 h. This was attributed to the optimized adsorption states of the surface ligands. PFDA-QDs film maintained 354% after 4 h of heating, whereas that of OA-QDs film was 104%. Thus, PFDA modification enhances PL intensity and suppresses PL degradation under heating, which is important for wavelength converters for optoelectronic device applications.

Keywords: modification; thermal resistance; quantum dots; qds; perfluorodecanoic acid; cspb

Journal Title: Royal Society Open Science
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.