LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Field emission: calculations supporting a new methodology of comparing theory with experiment

Photo from wikipedia

This paper provides a demonstration-of-concept of a new methodology for comparing field electron emission (FE) theory and experiment. It uses the parameter κ in the mathematical equation Im = CVmκ… Click to show full abstract

This paper provides a demonstration-of-concept of a new methodology for comparing field electron emission (FE) theory and experiment. It uses the parameter κ in the mathematical equation Im = CVmκ exp[–B/Vm] (where B and C are weakly varying or constants) that is taken to describe how measured current Im depends on measured voltage Vm for electronically ideal FE systems (i.e. systems that (i) have constant configuration during voltage application and (ii) have Im(Vm) given by the emission physics alone). Experimental parameter values (κm) are used to compare two alternative FE theories, for which allowable (but different) κ ranges have been established. At present, contributions to the ‘total theoretical κ’ made by voltage dependence of notional emission area are not well known: simulations reported here provide data about four commonly investigated emitter shapes. The methodology is then applied to compare 1928/1929 Fowler–Nordheim (FN) FE theory and 1956 Murphy–Good (MG) FE theory. It is theoretically certain that the 1956 theory is ‘better physics’ than the 1928/1929 theory. As in previous attempts to reach known correct theoretical conclusions by experimentally based argument, the new methodology tends to favour MG FE theory, but is formally indecisive at this stage. Further progress needs better methods of establishing error limits and of measuring κm.

Keywords: methodology; new methodology; methodology comparing; emission; theory experiment

Journal Title: Royal Society Open Science
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.