LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Folding–unfolding asymmetry and a RetroFold computational algorithm

Photo from wikipedia

We treat protein folding as molecular self-assembly, while unfolding is viewed as disassembly. Fracture is typically a much faster process than self-assembly. Self-assembly is often an exponentially decaying process, since… Click to show full abstract

We treat protein folding as molecular self-assembly, while unfolding is viewed as disassembly. Fracture is typically a much faster process than self-assembly. Self-assembly is often an exponentially decaying process, since energy relaxes due to dissipation, while fracture is a constant-rate process as the driving force is opposed by damping. Protein folding takes two orders of magnitude longer than unfolding. We suggest a mathematical transformation of variables, which makes it possible to view self-assembly as time-reversed disassembly, thus folding can be studied as reversed unfolding. We investigate the molecular dynamics modelling of folding and unfolding of the short Trp-cage protein. Folding time constitutes about 800 ns, while unfolding (denaturation) takes only about 5.0 ns and, therefore, fewer computational resources are needed for its simulation. This RetroFold approach can be used for the design of a novel computation algorithm, which, while approximate, is less time-consuming than traditional folding algorithms.

Keywords: folding unfolding; protein folding; self assembly; algorithm; asymmetry retrofold; unfolding asymmetry

Journal Title: Royal Society Open Science
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.