LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Theory of energy harvesting from heartbeat including the effects of pleural cavity and respiration

Photo by mbrunacr from unsplash

Self-powered implantable devices with flexible energy harvesters are of significant interest due to their potential to solve the problem of limited battery life and surgical replacement. The flexible electronic devices… Click to show full abstract

Self-powered implantable devices with flexible energy harvesters are of significant interest due to their potential to solve the problem of limited battery life and surgical replacement. The flexible electronic devices made of piezoelectric materials have been employed to harvest energy from the motion of biological organs. Experimental measurements show that the output voltage of the device mounted on porcine left ventricle in chest closed environment decreases significantly compared to the case of chest open. A restricted-space deformation model is proposed to predict the impeding effect of pleural cavity, surrounding tissues, as well as respiration on the efficiency of energy harvesting from heartbeat using flexible piezoelectric devices. The analytical solution is verified by comparing theoretical predictions to experimental measurements. A simple scaling law is established to analyse the intrinsic correlations between the normalized output power and the combined system parameters, i.e. the normalized permitted space and normalized electrical load. The results may provide guidelines for optimization of in vivo energy harvesting from heartbeat or the motions of other biological organs using flexible piezoelectric energy harvesters.

Keywords: harvesting heartbeat; energy; pleural cavity; respiration; energy harvesting

Journal Title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.