LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On the homogenization of the acoustic wave propagation in perforated ducts of finite length for an inviscid and a viscous model

Photo from wikipedia

The direct numerical simulation of the acoustic wave propagation in multiperforated absorbers with hundreds or thousands of tiny openings would result in a huge number of basis functions to resolve… Click to show full abstract

The direct numerical simulation of the acoustic wave propagation in multiperforated absorbers with hundreds or thousands of tiny openings would result in a huge number of basis functions to resolve the microstructure. One is, however, primarily interested in effective and so homogenized transmission and absorption properties and how they are influenced by microstructure and its endpoints. For this, we introduce the surface homogenization that asymptotically decomposes the solution in a macroscopic part, a boundary layer corrector close to the interface and a near-field part close to its ends. The effective transmission and absorption properties are expressed by transmission conditions for the macroscopic solution on an infinitely thin interface and corner conditions at its endpoints to ensure the correct singular behaviour, which are intrinsic to the microstructure. We study and give details on the computation of the effective parameters for an inviscid and a viscous model and show their dependence on geometrical properties of the microstructure for the example of Helmholtz equation. Numerical experiments indicate that with the obtained macroscopic solution representation one can achieve an high accuracy for low and high porosities as well as for viscous boundary conditions while using only a small number of basis functions.

Keywords: inviscid viscous; acoustic wave; wave propagation; viscous model

Journal Title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.