There is growing experimental evidence that many respiratory viruses—including influenza and SARS-CoV-2—can interact, such that their epidemiological dynamics may not be independent. To assess these interactions, standard statistical tests of… Click to show full abstract
There is growing experimental evidence that many respiratory viruses—including influenza and SARS-CoV-2—can interact, such that their epidemiological dynamics may not be independent. To assess these interactions, standard statistical tests of independence suggest that the prevalence ratio—defined as the ratio of co-infection prevalence to the product of single-infection prevalences—should equal unity for non-interacting pathogens. As a result, earlier epidemiological studies aimed to estimate the prevalence ratio from co-detection prevalence data, under the assumption that deviations from unity implied interaction. To examine the validity of this assumption, we designed a simulation study that built on a broadly applicable epidemiological model of co-circulation of two emerging or seasonal respiratory viruses. By focusing on the pair influenza–SARS-CoV-2, we first demonstrate that the prevalence ratio systematically underestimates the strength of interaction, and can even misclassify antagonistic or synergistic interactions that persist after clearance of infection. In a global sensitivity analysis, we further identify properties of viral infection—such as a high reproduction number or a short infectious period—that blur the interaction inferred from the prevalence ratio. Altogether, our results suggest that ecological or epidemiological studies based on co-detection prevalence data provide a poor guide to assess interactions among respiratory viruses.
               
Click one of the above tabs to view related content.