A central tenet of niche construction (NC) theory is that organisms can alter their environments in heritable and evolutionarily important ways, often altering selection pressures. We suggest that the physical… Click to show full abstract
A central tenet of niche construction (NC) theory is that organisms can alter their environments in heritable and evolutionarily important ways, often altering selection pressures. We suggest that the physical changes niche constructors make to their environments may also alter trait heritability and the response of phenotypes to selection. This effect might change evolution, over and above the effect of NC acting via selection alone. We develop models of trait evolution that allow us to partition the effects of NC on trait heritability from those on selection to better investigate their distinct effects. We show that the response of a phenotype to selection and so the pace of phenotypic change can be considerably altered in the presence of NC and that this effect is compounded when trans-generational interactions are included. We argue that novel mathematical approaches are needed to describe the simultaneous effects of NC on trait evolution via selection and heritability. Just as indirect genetic effects have been shown to significantly increase trait heritability, the effects of NC on heritability in our model suggest a need for further theoretical development of the concept of heritability.
               
Click one of the above tabs to view related content.