LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Prevalence and mechanisms of environmental hyperoxia-induced thermal tolerance in fishes

Photo by karsten_wuerth from unsplash

Recent evidence has suggested environmental hyperoxia (O2 supersaturation) can boost cardiorespiratory performance in aquatic ectotherms, thereby increasing resilience to extreme heat waves associated with climate change. Here, using rainbow trout… Click to show full abstract

Recent evidence has suggested environmental hyperoxia (O2 supersaturation) can boost cardiorespiratory performance in aquatic ectotherms, thereby increasing resilience to extreme heat waves associated with climate change. Here, using rainbow trout (Oncorhynchus mykiss) as a model species, we analysed whether improved cardiorespiratory performance can explain the increased thermal tolerance of fish in hyperoxia (200% air saturation). Moreover, we collated available literature data to assess the prevalence and magnitude of hyperoxia-induced thermal tolerance across fish species. During acute warming, O2 consumption rate was substantially elevated under hyperoxia relative to normoxia beyond 23°C. This was partly driven by higher cardiac output resulting from improved cardiac contractility. Notably, hyperoxia mitigated the rise in plasma lactate at temperatures approaching upper limits and elevated the critical thermal maximum (+0.87°C). Together, these findings show, at least in rainbow trout, that hyperoxia-induced thermal tolerance results from expanded tissue O2 supply capacity driven by enhanced cardiac performance. We show 50% of the fishes so far examined have increased critical thermal limits in hyperoxia (range: 0.4–1.8°C). This finding indicates environmental hyperoxia could improve the ability of a large number of fishes to cope with extreme acute warming, thereby increasing resilience to extreme heat wave events resulting from climate change.

Keywords: hyperoxia induced; environmental hyperoxia; induced thermal; thermal tolerance; hyperoxia

Journal Title: Proceedings of the Royal Society B: Biological Sciences
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.