LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Quantitative genetic-by-soil microbiome interactions in a perennial grass affect functional traits

Photo from wikipedia

Plants interact with diverse microbiomes that can impact plant growth and performance. Recent studies highlight the potential beneficial aspects of plant microbiomes, including the possibility that microbes facilitate the process… Click to show full abstract

Plants interact with diverse microbiomes that can impact plant growth and performance. Recent studies highlight the potential beneficial aspects of plant microbiomes, including the possibility that microbes facilitate the process of local adaptation in their host plants. Microbially mediated local adaptation in plants occurs when local host genotypes have higher fitness than foreign genotypes because of their affiliation with locally beneficial microbes. Here, plant adaptation results from genetic interactions of the host with locally beneficial microbes (e.g. host genotype-by-microbiome interactions). We used a recombinant inbred line (RIL) mapping population derived from upland and lowland ecotypes of the diploid C4 perennial bunch grass Panicum hallii to explore quantitative genetic responses to soil microbiomes focusing on functional root and shoot traits involved in ecotypic divergence. We show that the growth and development of ecotypes and their trait divergence depends on soil microbiomes. Moreover, we find that the genetic architecture is modified by soil microbiomes, revealing important plant genotype-by-microbiome interactions for quantitative traits. We detected a number of quantitative trait loci (QTL) that interact with the soil microbiome. Our results highlight the importance of microbial interactions in ecotypic divergence and trait genetic architecture in C4 perennial grasses.

Keywords: soil microbiome; microbiome interactions; quantitative genetic; plant; microbiome; soil

Journal Title: Proceedings of the Royal Society B: Biological Sciences
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.