LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nonlinear buckling behaviour of spherical shells: barriers and symmetry-breaking dimples

Photo by p_kuzovkova from unsplash

The nonlinear axisymmetric post-buckling behaviour of perfect, thin, elastic spherical shells subject to external pressure and their asymmetric bifurcations are characterized, providing results for a structure/loading combination with an exceptionally… Click to show full abstract

The nonlinear axisymmetric post-buckling behaviour of perfect, thin, elastic spherical shells subject to external pressure and their asymmetric bifurcations are characterized, providing results for a structure/loading combination with an exceptionally nonlinear buckling response. Immediately after the onset of buckling, the buckling mode localizes into a dimple at the poles. The relations among the pressure, the dimple amplitude and the change in volume of the shell are determined over a large range of pole deflections. These results allow accurate evaluation of criteria such as the Maxwell condition for which the energies in the unbuckled and buckled states are the same and evaluation of the influences of pressure versus volume-controlled loadings. Non-axisymmetric bifurcation from the axisymmetric state, which occurs deep into the post-buckling regime in the form of multi-lobed dimples, is also established and discussed. This article is part of the themed issue ‘Patterning through instabilities in complex media: theory and applications.’

Keywords: nonlinear buckling; buckling behaviour; spherical shells; behaviour spherical; shells barriers; barriers symmetry

Journal Title: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.