LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Detecting bacterial adaptation within individual microbiomes

Photo from wikipedia

The human microbiome harbours a large capacity for within-person adaptive mutations. Commensal bacterial strains can stably colonize a person for decades, and billions of mutations are generated daily within each… Click to show full abstract

The human microbiome harbours a large capacity for within-person adaptive mutations. Commensal bacterial strains can stably colonize a person for decades, and billions of mutations are generated daily within each person's microbiome. Adaptive mutations emerging during health might be driven by selective forces that vary across individuals, vary within an individual, or are completely novel to the human population. Mutations emerging within individual microbiomes might impact the immune system, the metabolism of nutrients or drugs, and the stability of the community to perturbations. Despite this potential, relatively little attention has been paid to the possibility of adaptive evolution within complex human-associated microbiomes. This review discusses the promise of studying within-microbiome adaptation, the conceptual and technical limitations that may have contributed to an underappreciation of adaptive de novo mutations occurring within microbiomes to date, and methods for detecting recent adaptive evolution. This article is part of a discussion meeting issue ‘Genomic population structures of microbial pathogens’.

Keywords: within individual; individual microbiomes; adaptation within; bacterial adaptation; detecting bacterial

Journal Title: Philosophical Transactions of the Royal Society B: Biological Sciences
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.