LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Utilization of size polymorphism in ITS1 and ITS2 regions for identification of pathogenic yeast species.

Photo from wikipedia

Despite the existence of a variety of available yeast identification strategies, easier and more cost-effective methods are required for routine use in clinical laboratories. The internal transcribed spacer (ITS) regions… Click to show full abstract

Despite the existence of a variety of available yeast identification strategies, easier and more cost-effective methods are required for routine use in clinical laboratories. The internal transcribed spacer (ITS) regions of fungal rRNA genes exhibit variable sizes depending on the yeast species. In the present study, fragment size polymorphism (FSP) analysis of the ITS1 and ITS2 regions for identification of the clinically most important yeast species was assessed. The ITS1 and ITS2 regions of 190 strains, including isolates of 31 standard strains and 159 clinical isolates, were separately PCR-amplified with two primer sets: ITS1-ITS2 and ITS3-ITS4. PCR products were mixed and the two-band electrophoretic pattern of each sample was analysed according to the size of the ITS regions as predicted from the GenBank database. Using this method and avoiding expensive tools such as sequencing or capillary electrophoresis, we were able to differentiate nearly all pathogenic yeast species, including Candida albicans, Candida tropicalis, Candida glabrata, Candida parapsilosis, Candida krusei, Candida guilliermondii, Candida kefyr, Candida lusitaniae, Candida rugosa, Cryptococcus neoformans, and Saccharomyces cerevisiae. The method showed limited discriminatory power to differentiate species of the Candida parapsilosis complex. Differentiation of C. albicans and C. tropicalis needs already identified controls. Nevertheless, the method benefits from advantages such as lower cost, higher speed and wider range of species than some commercial yeast-identification methods. We consider this method one of the easiest molecular approaches for identifying a wide range of human pathogenic yeast species, applicable to both diagnostic and epidemiological purposes.

Keywords: pathogenic yeast; candida; its2 regions; yeast; its1 its2; yeast species

Journal Title: Journal of medical microbiology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.