LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An isothermal amplification-coupled dipstick for the rapid detection of COVID-19.

Photo by lamoune from unsplash

Early detection of coronavirus disease 2019 (COVID-19) is critical for both initiating appropriate treatment and preventing the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent. A… Click to show full abstract

Early detection of coronavirus disease 2019 (COVID-19) is critical for both initiating appropriate treatment and preventing the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent. A simple and rapid diagnostic test that can be performed without any expensive equipment would be valuable for clinicians working in a low-resource setting. Here, we report a point-of-care detection technique for COVID-19 that combines the power of isothermal amplification (reverse transcription helicase-dependent amplification, RT-HDA) and dipstick technologies. The limit of detection of this diagnostic test is six copies of SARS-CoV-2 µl-1 in clinical specimens. Of the 22 clinical specimens tested, RT-HDA-coupled dipstick correctly identified all positive and negative specimens. The RT-HDA can be performed over a heating block and the results can be interpreted visually with the dipstick technology without any specialized equipment. Furthermore, the RT-HDA-coupled dipstick could be performed in a short turnaround time of ~2 h. Thus, the RT-HDA-coupled dipstick could serve as a point-of-care diagnostic test for COVID-19 in a low-resource environment.

Keywords: hda; covid; detection; isothermal amplification; coupled dipstick

Journal Title: Journal of medical microbiology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.