Bacterial type VI secretion systems (T6SSs) are contractile nanomachines that deliver proteinic substrates into target prokaryotic or eukaryotic cells and the surrounding milieu. The genus Campylobacter encompasses 39 recognized species… Click to show full abstract
Bacterial type VI secretion systems (T6SSs) are contractile nanomachines that deliver proteinic substrates into target prokaryotic or eukaryotic cells and the surrounding milieu. The genus Campylobacter encompasses 39 recognized species and 13 subspecies, with many belonging to a group known as ‘emerging Campylobacter pathogens’. Within Campylobacter , seven species have been identified to harbour a complete T6SS cluster but have yet to be comparatively assessed. In this study, using systematic bioinformatics approaches and the T6SS-positive Campylobacter jejuni 488 strain as a reference, we explored the genus-wide prevalence, similarity and make-up of the T6SS amongst 372 publicly available ‘complete’ Campylobacter genomes. Our analyses predict that approximately one-third of Campylobacter species possess a T6SS. We also putatively report the first identification of a T6SS in four species: Campylobacter cuniculorum, Campylobacter helveticus, Campylobacter armoricus and Campylobacter ornithocola . The Campylobacter T6SSs cluster into three distinct organizations (I–III), of which two break down into further variants. Thirty T6SS-containing genomes were found to harbour more than one vgrG gene, with Campylobacter lari strain NCTC 11845 possessing five. Analysis of the C. jejuni Pathogenicity Island-1 confirmed its conservation amongst T6SS-positive C. jejuni strains, as well as highlighting its diverse genetic composition, including additional putative effector–immunity pairs (e.g. PoNe and DUF1911 domains). Effector–immunity pairs were also observed neighbouring vgrGs in several other Campylobacter species, in addition to putative genes encoding nucleases, lysozymes, ATPases and a ferric ATP-binding cassette uptake system. These observations highlight the diverse genetic make-up of the T6SS within Campylobacter and provide further evidence of its role in pathogenesis.
               
Click one of the above tabs to view related content.