The blast fungus Magnaporthe oryzae devastates global rice yields and is an emerging threat to wheat. Determining the metabolic strategies underlying M. oryzae growth in host cells could lead to… Click to show full abstract
The blast fungus Magnaporthe oryzae devastates global rice yields and is an emerging threat to wheat. Determining the metabolic strategies underlying M. oryzae growth in host cells could lead to the development of new plant protection approaches against blast. Here, we targeted asparagine synthetase (encoded by ASN1), which is required for the terminal step in asparagine production from aspartate and glutamine, the sole pathway to de novo asparagine biosynthesis in M. oryzae. Consequently, the Δasn1 mutant strains could not grow on minimal media without asparagine supplementation. Spores harvested from supplemented plates could form appressoria and penetrate rice leaf surfaces, but biotrophic growth was aborted and the Δasn1 strains were nonpathogenic. This work provides strong genetic evidence that de novo asparagine biosynthesis, and not acquisition from the host, is a critical and potentially exploitable metabolic strategy employed by M. oryzae in order to successfully colonize rice cells.
               
Click one of the above tabs to view related content.