The ubiquitous unicellular eukaryote, Acanthamoeba, is known to play a role in the survival and dissemination of Campylobacter jejuni. C. jejuni is the leading cause of bacterial foodborne gastroenteritis world-wide… Click to show full abstract
The ubiquitous unicellular eukaryote, Acanthamoeba, is known to play a role in the survival and dissemination of Campylobacter jejuni. C. jejuni is the leading cause of bacterial foodborne gastroenteritis world-wide and is a major public health problem. The ability of C. jejuni to interact and potentially invade epithelial cells is thought to be key for disease development in humans. We examined C. jejuni grown under standard laboratory conditions, 11168HCBA with that harvested from within Acanthamoeba castellanii (11168HAC/CBA) or Acanthamoeba polyphaga (11168HAP/CBA), and compared their ability to invade different cell lines. C. jejuni harvested from within amoebae had a ~3.7-fold increase in invasiveness into T84 human epithelial cells and a striking ~11-fold increase for re-entry into A. castellanii cells. We also investigated the invasiveness and survivability of six diverse representative C. jejuni strains within Acanthamoeba spp., our results confirm that invasion and survivability is likely host-cell-dependent. Our survival assay data led us to conclude that Acanthamoeba spp. are a transient host for C. jejuni and that survival within amoebae pre-adapts C. jejuni and enhances subsequent cell invasion. This study provides new insight into C. jejuni interactions with amoebae and its increased invasiveness potential in mammalian hosts.
               
Click one of the above tabs to view related content.