The Ojo de Liebre Lagoon is a Marine Protected Area that lies within a UNESCO World Heritage Site and is a critical habitat for important migratory species such as the… Click to show full abstract
The Ojo de Liebre Lagoon is a Marine Protected Area that lies within a UNESCO World Heritage Site and is a critical habitat for important migratory species such as the grey whale and bird species. Unique hypersaline environments, such as the Ojo de Liebre Lagoon, are underexplored in terms of their bacterial and chemical diversity, representing a potential source for new bioactive compounds with pharmacological properties. Actinobacteria are one of the most diverse and prolific taxonomic bacterial groups in terms of marine bioactive compounds. This study aimed to identify the culturable actinobacterial community inhabiting the Lagoon, as well as to test their potential as new sources of anticancer compounds with pharmacological potential. A selective isolation approach focused on spore-forming bacteria from 40 sediment samples generated a culture collection of 64 strains. The 16S rRNA gene analyses identified three phyla in this study, the Actinobacteria, Firmicutes and Proteobacteria, where the phylum Actinobacteria dominated (57%) the microbial community profiles. Within the Actinobacteria, nine different genera were isolated including the Actinomadura, Micromonospora, Nocardiopsis, Plantactinospora and Streptomyces sp. We observed seasonal differences on actinobacteria recovery. For instance, Micromonospora strains were recovered during the four sampling seasons, while Arthrobacter and Pseudokineococcus were only isolated in February 2018, and Blastococcus, Rhodococcus and Streptomyces were uniquely isolated in June 2018. Ethyl acetate crude extracts derived from actinobacterial cultures were generated and screened for cytotoxic activity against six cancer cell lines. Strains showed promising low percentages of viability on lung (H1299), cervical (SiHa), colon (Caco-2) and liver (HepG2) cancer lines. Molecular networking results suggest many of the metabolites produced by these strains are unknown and they might harbour novel chemistry. Our results showed the Ojo de Liebre Lagoon is a novel source for isolating diverse marine actinobacteria which produce promising bioactive compounds for potential biotechnological use as anticancer agents.
               
Click one of the above tabs to view related content.