LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Methionyl-tRNA formyltransferase utilizes 10-formyldihydrofolate as an alternative substrate and impacts antifolate drug action

Photo from wikipedia

Methionyl-tRNA formyltransferase (Fmt)-mediated formylation of Met-tRNAfMet to fMet-tRNAfMet is crucial for efficient initiation of translation in bacteria and the eukaryotic organelles. Folate dehydrogenase-cyclohydrolase (FolD), a bifunctional enzyme, carries out conversion… Click to show full abstract

Methionyl-tRNA formyltransferase (Fmt)-mediated formylation of Met-tRNAfMet to fMet-tRNAfMet is crucial for efficient initiation of translation in bacteria and the eukaryotic organelles. Folate dehydrogenase-cyclohydrolase (FolD), a bifunctional enzyme, carries out conversion of 5,10-methylene tetrahydrofolate (5,10-CH2-THF) to 10-formyl-THF (10-CHO-THF), a metabolite utilized by Fmt as a formyl group donor. In this study, using in vivo and in vitro approaches, we show that 10-CHO-DHF may also be utilized by Fmt as an alternative substrate (formyl group donor) to formylate Met-tRNAfMet. Dihydrofolate (DHF) formed as a by-product in the in vitro assay was verified by LC-MS/MS analysis. FolD-deficient mutants and Fmt over-expressing strains were more sensitive to trimethoprim (TMP) than the ∆fmt strain, suggesting that the domino effect of TMP leads to inhibition of protein synthesis and strain growth. Antifolate treatment to Escherichia coli showed a decrease in the reduced folate species (THF, 5,10-CH2-THF, 5-CH3-THF, 5,10-CH+-THF and 5-CHO-THF) and increase in the oxidized folate species (folic acid and DHF). In cells, 10-CHO-DHF and 10-CHO-folic acid were enriched in the stationary phase. This suggests that 10-CHO-DHF is a bioactive metabolite in the folate pathway for generating other folate intermediates and fMet-tRNAfMet.

Keywords: thf; alternative substrate; methionyl trna; trna formyltransferase

Journal Title: Microbiology
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.