LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Thalamic bursting and the role of timing and synchrony in thalamocortical signaling in the awake mouse

Photo from wikipedia

The thalamus controls transmission of sensory signals from periphery to cortex, ultimately shaping perception. Despite this significant role, dynamic thalamic gating and the consequences for downstream cortical sensory representations have… Click to show full abstract

The thalamus controls transmission of sensory signals from periphery to cortex, ultimately shaping perception. Despite this significant role, dynamic thalamic gating and the consequences for downstream cortical sensory representations have not been well studied in the awake brain. We optogenetically modulated the ventro-posterior medial thalamus in the vibrissa pathway of the awake mouse, and measured spiking activity in the thalamus, and activity in primary somatosensory cortex (S1) using extracellular electrophysiology and genetically encoded voltage imaging. Thalamic hyperpolarization significantly enhanced thalamic sensory-evoked bursting, yet surprisingly the S1 cortical response was not amplified, but instead timing precision was significantly increased, spatial activation more focused, and there was an increased synchronization of cortical inhibitory neurons. A thalamocortical network model implicates the modulation of precise timing of feedforward thalamic population spiking, presenting a highly sensitive, timing-based gating of sensory signaling to cortex.

Keywords: role timing; role; awake mouse; thalamic bursting; bursting role

Journal Title: Neuron
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.