LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

AGO1 regulates pericentromeric regions in mouse embryonic stem cells

Photo by lauramayela99 from unsplash

Depletion of AGO1 in mESCs leads to a redistribution of H3K9me3 and HP1α away from pericentromeric regions and is accompanied by an up-regulation of major satellites transcripts. Argonaute proteins (AGOs),… Click to show full abstract

Depletion of AGO1 in mESCs leads to a redistribution of H3K9me3 and HP1α away from pericentromeric regions and is accompanied by an up-regulation of major satellites transcripts. Argonaute proteins (AGOs), which play an essential role in cytosolic post-transcriptional gene silencing, have been also reported to function in nuclear processes like transcriptional activation or repression, alternative splicing and, chromatin organization. As most of these studies have been conducted in human cancer cell lines, the relevance of AGOs nuclear functions in the context of mouse early embryonic development remains uninvestigated. Here, we examined a possible role of the AGO1 protein on the distribution of constitutive heterochromatin in mouse embryonic stem cells (mESCs). We observed a specific redistribution of the repressive histone mark H3K9me3 and the heterochromatin protein HP1α, away from pericentromeric regions upon Ago1 depletion. Furthermore, we demonstrated that major satellite transcripts are strongly up-regulated in Ago1_KO mESCs and that their levels are partially restored upon AGO1 rescue. We also observed a similar redistribution of H3K9me3 and HP1α in Drosha_KO mESCs, suggesting a role for microRNAs (miRNAs) in the regulation of heterochromatin distribution in mESCs. Finally, we showed that specific miRNAs with complementarity to major satellites can partially regulate the expression of these transcripts.

Keywords: ago1; embryonic stem; mescs; mouse embryonic; pericentromeric regions; stem cells

Journal Title: Life Science Alliance
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.