LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Efficient generation of lower induced motor neurons by coupling Ngn2 expression with developmental cues

Photo by ospanali from unsplash

Human pluripotent stem cells (hPSCs) are a powerful tool for disease modelling and drug discovery, especially when access to primary tissue is limited, such as in the brain. Current neuronal… Click to show full abstract

Human pluripotent stem cells (hPSCs) are a powerful tool for disease modelling and drug discovery, especially when access to primary tissue is limited, such as in the brain. Current neuronal differentiation approaches use either small molecules for directed differentiation or transcription-factor-mediated programming. In this study we coupled the overexpression of the neuralising transcription factor Neurogenin2 (Ngn2) with small molecule patterning to differentiate hPSCs into lower induced Motor Neurons (liMoNes). We showed that this approach induced activation of the motor neuron (MN) specific transcription factor Hb9/MNX1, using anHb9::GFP-reporter line, with up to 95% of cells becoming Hb9::GFP+. These cells acquired and maintained expression of canonical early and mature MN markers. Molecular and functional profiling revealed that liMoNes resembled bona fide hPSC-derived MN differentiated by conventional small molecule patterning. liMoNes exhibited spontaneous electrical activity, expressed synaptic markers and formed contacts with muscle cells in vitro. Pooled, multiplex single-cell RNA sequencing on 50 cell lines revealed multiple anatomically distinct MN subtypes of cervical and brachial, limb-innervating MNs in reproducible quantities. We conclude that combining small molecule patterning with Ngn2 can facilitate the high-yield, robust and reproducible production of multiple disease-relevant MN subtypes, which is fundamental in the path to propel forward our knowledge of motoneuron biology and its disruption in disease.

Keywords: motor neurons; induced motor; expression; lower induced; motor; transcription factor

Journal Title: Cell reports
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.