LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Infection of the maternal-fetal interface and vertical transmission following low-dose inoculation of pregnant rhesus macaques (Macaca mulatta) with an African-lineage Zika virus

Photo from wikipedia

Background Congenital Zika virus (ZIKV) infection can result in birth defects, including malformations in the fetal brain and visual system. There are two distinct genetic lineages of ZIKV: African and… Click to show full abstract

Background Congenital Zika virus (ZIKV) infection can result in birth defects, including malformations in the fetal brain and visual system. There are two distinct genetic lineages of ZIKV: African and Asian. Asian lineage ZIKVs have been associated with adverse pregnancy outcomes in humans; however, recent evidence from experimental models suggests that African-lineage viruses can also be vertically transmitted and cause fetal harm. Methodology/Principal Findings To evaluate the potential for vertical transmission of African-lineage ZIKV, we inoculated nine pregnant rhesus macaques (Macaca mulatta) subcutaneously with 44 plaque- forming units of a ZIKV strain from Senegal, (ZIKV-DAK). Dams were inoculated either at gestational day 30 or 45. Following maternal inoculation, pregnancies were surgically terminated seven or 14 days later and fetal and maternal-fetal interface tissues were collected and evaluated. Infection in the dams was evaluated via plasma viremia and neutralizing antibody titers pre- and post- ZIKV inoculation. All dams became productively infected and developed strong neutralizing antibody responses. ZIKV RNA was detected in maternal-fetal interface tissues (placenta, decidua, and fetal membranes) by RT-qPCR and in situ hybridization. In situ hybridization detected ZIKV predominantly in the decidua and revealed that the fetal membranes may play a role in ZIKV vertical transmission. Infectious ZIKV was detected in the amniotic fluid of three pregnancies and one fetus had ZIKV RNA detected in multiple tissues. No significant pathology was observed in any fetus; however, we did find an increase in the occurrence of decidual vasculitis and necrosis in ZIKV-exposed pregnancies compared to gestational-age-matched controls. Conclusions/Significance This study demonstrates that African-lineage ZIKV, like Asian-lineage ZIKV, can be vertically transmitted to the macaque fetus during pregnancy. The low inoculating dose used in this study suggests a low minimal infectious dose for rhesus macaques. Vertical transmission with a low dose in macaques further supports the high epidemic potential of African ZIKV strains. Author Summary Zika virus infection during pregnancy can result in adverse pregnancy outcomes including birth defects and miscarriage. There are two distinct genetic backgrounds of Zika virus: Asian-lineage and African-lineage. Currently, only Asian-lineage Zika virus is causally associated with adverse pregnancy outcomes in people. However, experimental studies have shown that African-lineage Zika virus can infect the fetus during pregnancy and cause adverse outcomes. Adverse pregnancy outcomes may not be associated with infection in people until there is an outbreak in a naive population. Thus, as African-lineage Zika virus continues to spread globally, the risk that it may pose to pregnant people remains a public health concern. In this study, we demonstrate that African-lineage Zika virus can be transmitted from the mother to the fetus during pregnancy. This study is significant because we used rhesus macaques, an animal that shares many key elements of Zika virus infection in pregnant people. This study is also significant because we inoculated pregnant macaques with a very small amount of virus, suggesting that fetal infection reported in previously published macaque studies is not limited to high-dose inoculation.

Keywords: infection; virus; african lineage; zikv; lineage; zika virus

Journal Title: PLOS ONE
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.