LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Conservation management strategy impacts inbreeding and mutation load in scimitar-horned oryx

Photo by homajob from unsplash

In an age of habitat loss and overexploitation, small populations, both captive and wild, are increasingly facing the effects of isolation and inbreeding. Genetic management has therefore become a vital… Click to show full abstract

In an age of habitat loss and overexploitation, small populations, both captive and wild, are increasingly facing the effects of isolation and inbreeding. Genetic management has therefore become a vital tool for ensuring population viability. However, little is known about how the type and intensity of intervention shape the genomic landscape of inbreeding and mutation load. We address this using whole genome sequence data of scimitar-horned oryx (Oryx dammah), an iconic antelope that has been subject to contrasting management strategies since it was declared extinct in the wild. We show that unmanaged populations are enriched for long runs of homozygosity (ROH) and have significantly higher inbreeding coefficients than managed populations. Additionally, despite the total number of deleterious alleles being similar across management strategies, the burden of homozygous deleterious genotypes was consistently higher in unmanaged groups. These findings emphasise the risks associated with deleterious mutations through multiple generations of inbreeding. As wildlife management strategies continue to diversify, our study reinforces the importance of maintaining genome-wide variation in vulnerable populations and has direct implications for one of the largest reintroduction attempts in the world. Significance statement Conservation genetic management is becoming increasingly important for safeguarding and restoring wildlife populations. Understanding how the intensity of intervention influences genomic components of fitness is therefore essential for supporting species viability. We investigate the impact of contrasting management strategies on the genomic landscape of inbreeding and mutation load in captive populations of scimitar-horned oryx. We reveal how several decades of management have prevented the formation of long runs of homozygosity and masked the expression of deleterious mutations. Our findings highlight the dynamics between inbreeding, mutation load and population size and have direct implications for future management of threatened species.

Keywords: inbreeding mutation; management; mutation load; scimitar horned

Journal Title: Proceedings of the National Academy of Sciences of the United States of America
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.