LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Task-evoked metabolic demands of the posteromedial default mode network are shaped by dorsal attention and frontoparietal control networks

Photo from wikipedia

Although BOLD signal decreases in the default mode network (DMN) are commonly observed during attention-demanding tasks, their neurobiological underpinnings are not fully understood. Previous work has shown decreases but also… Click to show full abstract

Although BOLD signal decreases in the default mode network (DMN) are commonly observed during attention-demanding tasks, their neurobiological underpinnings are not fully understood. Previous work has shown decreases but also increases in glucose metabolism that match with or dissociate from these BOLD signal decreases, respectively. To resolve this discrepancy, we analyzed functional PET/MRI data from 50 healthy subjects during the performance of the visuo-spatial processing game TetrisĀ® and combined this with previously published data sets of working memory as well as visual and motor stimulation. Our findings show that the glucose metabolism of the posteromedial DMN is dependent on the metabolic demands of the correspondingly engaged task-positive brain networks. Specifically, the dorsal attention (involved in TetrisĀ®) and frontoparietal networks (engaged during working memory) shape the glucose metabolism of the posteromedial DMN in opposing directions. External attention-demanding tasks lead to a downregulation of the posteromedial DMN with consistent decreases in the BOLD signal and glucose metabolism, whereas working memory is subject to metabolically expensive mechanisms of BOLD signal suppression. We suggest that the former finding is mediated by decreased glutamate signaling, while the latter results from active GABAergic inhibition, regulating the competition between self-generated and task-driven internal demands. The results demonstrate that the DMN relates to cognitive processing in a flexible manner and does not always act as a cohesive task-negative network in isolation.

Keywords: network; glucose metabolism; mode network; bold signal; attention; default mode

Journal Title: eLife
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.