LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Molecular insights into the Darwin paradox of coral reefs from the sea anemone Aiptasia

Photo by oulashin from unsplash

Symbiotic cnidarians such as corals and anemones form highly productive and biodiverse coral-reef ecosystems in nutrient-poor ocean environments, a phenomenon known as Darwin’s Paradox. Resolving this paradox requires elucidating the… Click to show full abstract

Symbiotic cnidarians such as corals and anemones form highly productive and biodiverse coral-reef ecosystems in nutrient-poor ocean environments, a phenomenon known as Darwin’s Paradox. Resolving this paradox requires elucidating the molecular bases of efficient nutrient distribution and recycling in the cnidarian-dinoflagellate symbiosis. Using the sea anemone Aiptasia, we show that during symbiosis, the increased availability of glucose and the presence of the algae jointly induce the coordinated upregulation and re-localization of glucose and ammonium transporters. These molecular responses are critical to support symbiont functioning and organism-wide nitrogen assimilation through GS/GOGAT-mediated amino-acid biosynthesis. Our results reveal crucial aspects of the molecular mechanisms underlying nitrogen conservation and recycling in these organisms that allow them to thrive in the nitrogen-poor ocean environments. One-sentence summary Whole-organism nitrogen assimilation fueled by glucose from symbiotic algae enables corals to flourish in oligotrophic waters.

Keywords: anemone aiptasia; sea anemone; darwin paradox; nitrogen

Journal Title: Science Advances
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.